How Different Frames of Reference Interact: A Neural Network Model
نویسندگان
چکیده
It has been argued that people use multiple frames of reference (FORs) for representing and updating spatial relationships between objects in a complex environment. When there are conflicts among representations of multiple FORs, they compete to determine behavior. “Frame of Reference-based Map of Salience” theory (FORMS) suggests that FORs with high salience may be processed in priority. Here, we report a computational neural network model for a two-cannon task, which naturally involves multiple FORs with different levels of salience: intrinsic frame of reference (IFOR) and egocentric frame of reference (EFOR). The goal is to investigate the computational neural mechanisms underlying human spatial performance. Our simulation results fit earlier behavioral results well. The model suggests although multiple FORs may be initially represented independently, they interfere with each other by the inhibitory competition of neurons in the later process (in hidden layer) for conflict resolution. Moreover, salience may modulate the competition by prioritizing FORs with high salience levels. These results represent a connectionist support for the FORMS theory.
منابع مشابه
PREDICTION OF BIAXIAL BENDING BEHAVIOR OF STEEL-CONCRETE COMPOSITE BEAM-COLUMNS BY ARTIFICIAL NEURAL NETWORK
In this study, the complex behavior of steel encased reinforced concrete (SRC) composite beam–columns in biaxial bending is predicted by multilayer perceptron neural network. For this purpose, the previously proposed nonlinear analysis model, mixed beam-column formulation, is verified with biaxial bending test results. Then a large set of benchmark frames is provided and P-Mx-My triaxial ...
متن کاملNeural Controller Design for Suspension Systems
The main problem of vehicle vibration comes from road roughness. An active suspension systempossesses the ability to reduce acceleration of sprung mass continuously as well as to minimizesuspension deflection, which results in improvement of tire grip with the road surface. Thus, braketraction control and vehicle maneuverability can be improved consider ably .This study developeda new active su...
متن کاملEstimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
متن کاملTranslation and Hybridity in Scenes and Frames Semantics
The present study is a theoretical attempt to illustrate how Fillmore's Scenes and Frames Semantics (SFS) could be employed as a framework to portray the process of understanding and translating hybrid texts. It first reviews the origin of SFS; then it maps SFS onto Nida’s linguistic model of translation process and the Interpretive Theory of Translation; it examines in the next section, withi...
متن کاملAPPLICATION OF NEURAL NETWORK IN EVALUATION OF SEISMIC CAPACITY FOR STEEL STRUCTURES UNDER CRITICAL SUCCESSIVE EARTHQUAKES
Depending on the tectonic activities, most buildings subject to multiple earthquakes, while a single design earthquake is suggested in most seismic design codes. Perhaps, the lack of easy assessment to second shock information and sometimes use of inappropriate methods in estimating these features cause successive earthquakes mainly were ignored in the analysis procedure. In order to overcome t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016